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1. The D-NAP Facility
2. Power Hardware-In-The-Loop Capability
3. Case studies
» Testing demand-side management algorithm
« Evaluating power line carrier technologies
* Dynamic modelling
* Real-time grid emulator: wind turbine control design
4. Benefits of microgrid scale demonstration
5. Conclusions and lessons learned



The D-NAP Facility

(Distribution Network, Automation and Protection)

Microgrid#2
* This is a 3-phase, 400V, Utility D éic--:
100kVA microgrid — can Sweey
be split _icr;to 3 smaller o i B0KkvA JOKA 1
microgrids . @ !
 1.21 p.u. inductance is el |
available to emulate stift/ L1
weak topologies
e Grid connectionor Si_L_M_iciogri_dﬁ_
islanded using M-G set ] e |
« M-G set connected to an : E
RTDS to extend | i
simulation capabilities of : é & A
power systems : - | S
i 2Dk(\5/1A Stat;cOLii)v?/dm szrglc :

7.5 KVAr 2.2 KW 10kW



Mlcrogrld laboratory (D-NAP)
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10kVA inverter — Built and tested at the University of Strathclyd
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RT-PHIL (Power Hardware in the Loop)
Techniques and Capabilities
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Fast demand response in support of the
active distribution network
— with TNO Netherlands
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PowerMatcher as part of RT-PHIL [
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Evaluating smart grid communication 2

In an industrial microgrid environment

- with University of Udine

« Characterisation of power
line carrier (PLC) channels
within a controllable,
electrically noisy, LV
network

 Investigation of the possibility
of using PLC in a laboratory
for control

* |dentification of noise sources

for deployment of PLC for
smart grid technologies
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Dynamic performance of a low voltage microgrid
with droop controlled distributed generation
- with Aristotle University of Thessaloniki

« Using experimental measurements of a microgrid’'s (MG)
characteristics to validate a dynamic black-box model

* Focusing on small-signal dynamics (challenging
task when large number of ac/dc — dc/ac interfaces
are involved

* Investigate the interactions between rotating and inverter
interfaced DG units

« MG examined in grid-connected and islanded mode



Summary of microgrid projects

 DERRI Transnational Access
— DISCOSE (Testing PowerMatcher in RT-PHII environment)
— POLSAR (Investigating PLC in a microgrid)

— MoDERN and MoreModern (Dynamic modelling in a
microgrid)

— DERManagement (New energy management technology)

— PV-APLC Sdetecting and adjusting unbalance and
harmonics

- EURAMET (state estimation modelling and validation)



SOME LESSONS LEARNED AND
POSSIBLE SOLUTIONS



Low Voltage Branch Grid Impedance [
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The impedances of the grid branches at low ] o {
voltage level very often are not well known. E \
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For this reason the grid models at low voltage ,g S— )
level are afflicted by an important uncertainty. 0 —
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available in literature, have been £ \
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It is still open the problem to find
an optimal way to evaluate the grid
impedances on the real field.




Sensitivity Analysis

« Distribution networks present a large number
of nodal points.

« The installation of monitoring and

metering is expensive particularly at MV
and LV where the installation of new VTs
and CTs may be necessary.

 |tis not possible to measure at
every node and branch.

« |t is crucial identifying a strategy to
optimize the location, the number of
the measurement point is important
for effective network control; in order
to do this, atechnique based on
sensitivity analysis has been
developed successfully.
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Active Network Management
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A critical concern is the robustness of
online and automatic active network
management (ANM) algorithms/schemes.
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RT-Grid Emulator for wind turbine control =
design purpose (in its early stages) Strathclyde

Engineering

Lack of facilities with
capacity to test in a holistic
manner full-scale grid-
connected wind turbines in
a controlled environment
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Objectives

1. Design a Grid Emulator test rig (structure and compon
that will allow to perform endurance testing and power quality
validation for wind turbines based on the requirements of:
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* International Grid Codes
e Standard (e.g. IEC, etc.)
« Guidelines (e.g. IEEE, GL, etc.) e s

2. Turbine control performance assessment (may assist
understanding and addressing scalability issues)

3. Portability (‘bring’ the grid where needed!)




RT-Grid Emulator at NAREC

Specifications:

 Rated at 10MW, 11kV both ends
* Ability to perform electrical Hardware in the
loop operation

Capabilities:
* Asymmetrical/unbalanced condition

* @Grid fault level condition
e Harmonic distortion conditions

Will require power electronic interfaces
for power conditioning/

E 15MW Turbine Nacelle Testing Facility
Accelerated lifetime and design validation - grid Conformance coming ...
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Benefits to using a Microgrid test bed

2
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> Flexible configurations in a fully instrumented network
» No customers to accidently disconnect (saves $)

» Can run devices through scenarios rarely observed on
the public grid, e.g. frequency dips.

» Devices can be installed within a controlled environment
and constantly monitored

» New technologies can be evaluated for multiple
stakeholders



Conclusions
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« Microgrid test labs are capable of more than just
demonstrating microgrid technologies

« Useful platforms for validation and prototyping of
novel technologies

« Can be a route for smart grid technologies into
private microgrids and the public grid.
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